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Abstract To understand the importance of amino acids that

comprise the peptide PMI (p53-MDM2/MDMX inhibitor),

a p53-mimicking peptide with high affinity for the ubiquitin

ligase MDM2, computational alanine scanning has been

carried out using various protocols. This approach is very

useful for identifying regions of a peptide that can be mutated

to yield peptides that bind to their targets with higher affini-

ties. Computational alanine scanning is a very useful tech-

nique that involves mutating each amino acid of the peptide

in its complex with its target (MDM2 in the current study) to

alanine, running short simulations on the mutated complex

and computing the difference in interaction energies between

the mutant peptides and the target protein (MDM2 in the

current study) relative to the interaction energy of the original

(wild-type) peptide and the target protein (MDM2 in the

current study). We find that running multiple short simula-

tions yield values of computed binding affinities (enthalpies)

that are similar to those obtained from a long simulation and

are well correlated with the trends in the data available from

experiments that used Surface Plasmon Resonance to obtain

dissociation constants. The p53-mimicking peptides contain

three amino acids (F19, W23 and L26) that are major deter-

minants of the interactions between the peptides and MDM2

and form an essential motif. We find in the current study that

the trends amongst the contributions to experimental binding

affinities of the hydrophobic residues F19, W23 and L26 are

the best reproduced in all the computational protocols

examined here. This study suggests that running such short

simulations may provide a rapid method to redesign peptides

to obtain high-affinity variants against a target protein. We

further observe that modelling an extended conformation at

the C-terminus of the helical PMI peptides, in accord with the

conformation of the p53-peptide complexed to MDM2,

reproduces the trends seen amongst the experimental affini-

ties of the peptides that carry the alanine mutations at their

C-termini. This suggests that some of the mutant peptides

possibly interconvert between helical and extended states and

can bind to MDM2 in either conformation. This novel fea-

ture, not obvious from the crystallographic data, if factored

into modelling protocols, may yield novel high-affinity

peptides. Our findings suggest that such protocols may enable

rapid investigations of at least certain types of amino acid

mutations, notably from large to small amino acids.

Keywords p53 � MDM2 � Peptide � Mutagenesis �
Simulations

1 Introduction

The P53 protein is a tumour suppressor that protects cells

from various types of stresses by transcribing genes that
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modulate cell cycle, apoptosis and senescence [1]. Its

surveillance (for example checking for errors such as DNA

damage) and maintenance of genomic integrity are under

the control of several ligases of which the ubiquitin ligase

MDM2 (Murine Double Minute) is the most researched

[2]. MDM2 and p53 are engaged in a negative feedback

loop whereby MDM2 degrades p53 and p53 transcribes

MDM2. Under normal conditions, MDM2 sequesters p53

for degradation; upon stress, various post-translational

modifications release p53 from MDM2 [3]. MDM2 inter-

acts with p53 through at least two sites—the N-terminal

domains of both bind to each other, while there is an

interaction between MDM2 and the DNA-binding domain

of p53 [4]. The interaction between the N-terminal trans-

activation domain of p53 with MDM2 [5] hinges on three

critical residues in p53—F19, W23 and L26, which are

conserved [6]; structural, mutational and computational

studies have revealed that these three residues (F19, W23,

L26 highlighted in Fig. 1a) contribute the maximal binding

energy to the interaction (Fig. 1a). The three residues are

located on the hydrophobic face of an amphipathic helix

adopted by this segment of p53. This results in their spatial

disposition such that they embed in the largely hydropho-

bic-binding pocket of MDM2. The structure of the three

residues is also important to ensure a good fit in their

respective binding ‘‘pockets’’ in MDM2, although L26 is

most tolerant to certain substitutions. Interruption of the

N-terminal domain interactions between p53 and MDM2

has been shown in various in vitro and in vivo models to

activate p53 and causes cancer cells to die either through

apoptosis or senescence [7]. p53 has been directly or

indirectly implicated in most human cancers either through

a mutation in the gene or in some component of the

pathway. In a subset of cancers, while p53 itself is

unmodified, MDM2 is highly over-expressed [8, 9]. These

cancers become promising targets for small molecules and

peptides that bind MDM2 and disrupt the interaction

between the N-termini of both MDM2 and p53. Indeed

several small molecules and peptides have been developed/

designed for this purpose and some are already in clinical

trials [10]. In one such effort, phage display yielded one of

the most potent peptides called PMI [11] with sequence

TSFAEYWNLLSP (the amino acids in bold correspond to

the 3 conserved amino acids F19, W23 and L26, Fig. 1b);

this peptide bound to MDM2 at least two orders of mag-

nitude stronger than a peptide of the same length with the

wild-type p53 sequence (ETFSDLWKLLPE). While the

three residues, F, W and L (in bold) contribute a significant

amount of binding energy, neighbouring residues also

contribute small amounts that can yield a non-trivial total

contribution [12] and this has become abundantly clear

from the work on the PMI mutants [13]. In order to

examine the role of all residues in this peptide, the authors

subsequently carried out an alanine scan of the entire

peptide and found that while the majority of the binding

energy arises from these three hydrophobic residues and

additionally from residue Y22, there were significant

contributions from the other residues too. In order to get

atomistic insights into the origins of these contributions,

crystallography correlated with Isothermal Calorimetry

(ITC) would be required. While the authors did not embark

on structural characterization of all 12 mutants, they did

crystallize one and this provided some insights into struc-

ture–activity relationships. We have demonstrated that

dynamics plays a crucial role in modulating the interactions

between p53 and MDM2 [14–16] using the techniques of

molecular simulations, which have also been successfully

used in several other systems [17]. While the reproduction

of absolute free energies from simulations is still not

achievable [18], nevertheless the relative affinities and

the underlying trends are increasingly being captured by

simulation methods [17, 19]. For the current study, the

experimental data provide a very good test set to bench-

mark simulation methods that employ molecular dynamics

(MD) simulations. If a proper benchmark is established,

then the protocol may be used to design tight-binding

peptides. In the current study, we enquire whether it is

possible to estimate the trends in experimental binding

affinities by running several short simulations, or does one

need long simulations. The current work is carried out in

the spirit of a study [20], which demonstrated that the

conformational space that is covered over ten short simu-

lations is greater than that covered by one long simulation.

2 Methods

The crystal structure of MDM2 complexed with the peptide

PMI (crystal structure 3EQS, resolution 1.65 Å [11]) was

used for this study. Each amino acid of PMI was mutated to

alanine (except residue 4 which already is an alanine)

separately leading to 11 systems. Residues 25–109 of

MDM2 were included in these studies for which the

missing residue E25 was modelled using PyMOL [21];

similarly, we also modelled P12 of PMI as it was missing

in the crystal structure. For each mutant sequence derived

from PMI, 10 models were generated using MODELLER

9v8 [22] with the crystal structure of 3EQS as the template.

MODELLER works by satisfying spatial restraints that are

derived from an alignment of the sequence of the protein

whose three-dimensional structure has to be constructed

(the complex of the PMI peptides with MDM2) with the

sequence of the protein whose three-dimensional structure

is available from experiments such as crystallography

(3EQS in this study). The program optimizes a molecular

probability density function with the variable target
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function procedure in Cartesian space, which uses conju-

gate gradient algorithms and molecular dynamics with

simulated annealing. Each model was solvated using the

TIP3P water model with a 12 Å minimum distance

between solute and box boundary and neutralized using

Cl- ions as appropriate (for the wild-type system, we

added 4 Cl- ions, while for the alanine scan, we added

either 4 or 5 Cl- ions depending on the residue being

changed) using the TLEAP module of AMBER11 [23, 24].

The total number of atoms including water molecules

ranged from 19,257 to 24,119 across the various systems.

MD simulations were performed using the PMEMD mod-

ule, where each of the ten models was first minimized for

4000 steps using the ff99SB force field [25]. Subsequently,

employing a 2-fs time step, and SHAKE [26] on the

hydrogen atoms, each model was heated to 300 K over

30 ps, equilibrated for 100 ps, simulated for a production

run of 100 ps. Excluding heating, this resulted in a total of

1 ns for each peptide sequence. Binding enthalpies were

calculated using the MMGBSA script of AMBER11 over

500 frames (50 snapshots taken every 2 ps for each of the

10 models), while entropic contributions were estimated

using normal mode analysis from 50 frames (five snapshots

taken every 10 ps, multiplied by 10 models). To compare

the averages over the ten short simulations of 100 ps

duration each, we carried out one long simulation (50 ns)

of the wild-type peptide, of which the last 40 ns were

analysed. Binding enthalpies were calculated over 5,000

frames spaced 8 ps apart, while normal mode analysis was

carried out over 50 frames, spaced 800 ps apart.

While the crystal structures depict the PMI peptides as

being helical when complexed with MDM2, we have pre-

viously shown for p53 that the bound conformation of the

peptides can vary significantly and yet yield very similar

values of binding free energies [15]. Bearing this in mind,

we extended the current study for the 11 peptides com-

plexed to MDM2, where the conformations of the peptides

at their C-termini were changed to an extended state. This

was modelled based on the conformation of p53 in its

complex with MDM2 as seen in the crystal structure 1YCR

(resolution 2.6 Å, [27]) and as shown in Fig. 1a.

The numbering scheme used in our study refers to the

p53 sequence as numbered from 17 to 29 (ETFSDLW

KLLPEN) and the PMI sequence as numbered from 1 to 12

(TSFAEYWNLLSP). In these studies, we use DG to refer

to absolute values that have been either computed or

experimentally determined and DDG mainly for comparing

the ala scan with other methods.

3 Results

We generated ten models for each mutation using MOD-

ELLER and used them as starting points for the MD sim-

ulations in this study to ensure diversity in the sampling of

the phase space for each peptide–MDM2 complex. The

models generated by MODELLER varied by *0.1 Å over

all Ca atoms and *0.2 Å over all non-hydrogen atoms

(Fig. 2), although positional differences in sidechain atoms

can be as large as 6 Å. The residues that are buried are very

similar to each other in conformations while the exposed

residues vary significantly. This ensures that the MD sim-

ulations cover a wider range of phase space than would be

covered by a single starting structure. A comparison of the

energies of binding of PMI to MDM2 (Table 1) shows that

the average over ten short simulations of duration 100 ps

each yields values of enthalpies of binding that are very

similar to those obtained from averaging over 40 ns. The

use of the shorter simulations resulted in savings of com-

putational times of the order of 25-fold. The dominant

contribution to overall binding is van der Waals (Table 2)

and is in agreement with what we and others have dem-

onstrated earlier [12, 16, 28, 29], arising from the three

critical amino acids, F19, W23 and L26. There is some

difference in the electrostatic contributions, although they

are within the standard deviation; in any case, the elec-

trostatic interactions are offset by desolvation penalties.

We next asked what the energies would be if we had run

the simulations for 10, 20 or 30 ns only. The data in

Table 2 suggest that they all yield values that are similar to

the 40 ns analysis, and all the components are within 5% of

each other, suggesting that perhaps the use of shorter

simulations may be beneficial in terms of the savings in

Fig. 1 The structure of the p53 peptide in cyan ribbon and sticks (the

carbon, nitrogen and oxygen atoms are coloured cyan, blue and red,
respectively) complexed to the N-terminal domain of MDM2

(coloured surface where the carbon, nitrogen and oxygen atoms are

coloured green, blue and red, respectively) taken from the crystal

structure 1YCR (Kussie et al.) on the left (a) and the structure of the

PMI peptide in orange ribbon/sticks (the carbon, nitrogen and oxygen

atoms are coloured orange, blue and red, respectively) complexed to

the N-terminal domain of MDM2 (coloured surface where the carbon,

nitrogen and oxygen atoms are coloured green, blue and red,
respectively) taken from the crystal structure 3EQS (Pazgier et al.

2009) on the right (b). The three key hydrophobic residues that embed

into the surface of MDM2, i.e. F19, W23 and L26 are shown as

yellow sticks (the carbon and nitrogen atoms are coloured yellow and

blue, respectively); only the Ca atoms from the backbone and the

non-hydrogen atoms of the sidechains are shown for clarity
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computational times and at the same time, yield trends that

are in agreement with the trends seen in the experimentally

determined free energies.

Having established the benchmark, we next proceeded

to compute the enthalpies, entropies and free energies for

the alanine-scanned peptides over the ten short simulations

for each peptide and over several windows of time. The

results are shown graphically in Fig. 3. The correlations

between the estimated free energies across the various time

windows and the experimental affinities range from 0.65 to

0.71, with greater significance apparent only for the en-

thalpic changes. Indeed the enthalpies correlate between

0.79 and 0.92, which are quite good; the entropies,

unsurprisingly, do not appear to be well represented [30].

This is not surprising given that the computations of

entropy still suffer from significant approximations [17].

Moreover, while there will be an a non-negligible entropic

contribution, for example, arising from displacement of

water molecules, nevertheless the entropic contributions to

the overall free energy changes for the various peptides are

likely to be similar. What is interesting in our study is that

the correlations only increase by 7% when the simulation

times are increased by tenfold, from 100 ps to 1 ns. The

promising observations are that the hydrophobic tetrad of

W7, F3, L10 and Y6 appears to be the most perturbed by

the alanine mutations, as has been observed experimentally

[13]. Indeed, the only component of the enthalpy that is

significantly correlated to the experimental affinities is the

van der Waals interaction energy, thus underscoring the

dominance of packing in the interactions of these peptides

with MDM2. The tetrad residues F3, Y6, W7 and L10

undergo losses in van der Waals interaction energies of

approximately 9, 9, 13 and 6 kT, respectively. When T1 is

mutated to an alanine, the loss of experimental affinity has

been attributed to the destabilization of the helicity of the

peptide owing to disruption of helix capping; our simula-

tions show that in addition, the methyl group of the side-

chain of Thr packs against the phenolic sidechain of Y6

which in turn derives free energy by packing against H73

(Fig. 4a). Upon mutation of T1A, the packing of this

methyl is lost and the Y6 group disengages from the

packing, leading to a destabilization of the van der Waals

interaction energies by *5 kT. In the S2A mutation, the

loss of stabilization of the helix is partly compensated by

the formation of stronger hydrogen bonds between the

sidechain of Q72 and the backbone amide of F3, which is

now exposed; this incurs an electrostatic gain of *2 kT

inclusive of desolvation penalty. The F3A mutation as

expected incurs a large loss of van der Waals interaction

energy (8 kT), and the associated local perturbations lead to

a 12 kT loss of electrostatic stabilization, which is reduced

by the solvation of exposed polar groups. The E5A muta-

tion was experimentally shown to cause moderate reduc-

tion in binding affinity, originating in the loss of hydrogen

bonds that stabilize the helix. In addition, the current

Fig. 2 The ten conformations generated using MODELLER show

the variations in the structures of the models that are used as starting

points for each mutant peptide in our study. This figure shows the

structures of ten models of wild-type PMI complexed to MDM2. The

sidechains of the peptide are shown to highlight the variations in their

rotamers. It is clear that the buried sidechains do not vary much in

conformations, while the exposed residues can vary significantly. For

clarity, only the peptide sidechains are shown

Table 1 The computed enthalpies, entropies and free energies of the

binding of wild-type PMI to MDM2 from a long (50 ns) and 10 short

(100 ps) simulations (peptide is helical in the complex)

DH
(kcal/mol)

TDS
(kcal/mol)

DG
(kcal/mol)

Last 40 ns of 50 ns -48.3 ± 3.9 -34.11 ± 3.9 -14.2

10 * (last 100 ps of

200 ps)

-49.6 ± 4.0 -32.7 ± 3.7 -16.8

Table 2 The computed binding

enthalpies (in kcal/mol) and

components (in kcal/mol) across

different time windows for the

binding of wild-type PMI to

MDM2

PMI (100 fs) PMI 40 ns PMI 30 ns PMI 20 ns PMI 10 ns

DH (kcal/mol) -49.6 ± 4.0 -48.3 ± 3.9 -48.2 ± 4.1 -47.9 ± 4.2 -47.3 ± 3.9

ELEC (kcal/mol) -174.9 ± 35.2 -161.4 ± 27.5 -166.5 ± 28.7 -164.9 ± 28.5 -159.2 ± 21.6

VDW (kcal/mol) -65.5 ± 4.3 -64.2 ± 4.3 -64.7 ± 4.4 -65.7 ± 4.3 -65.7 ± 4.7

GB (kcal/mol) 200.0 ± 33.3 185.9 ± 26.4 191.7 ± 26.9 191.5 ± 26.5 186.4 ± 21.2

GBSOL

(kcal/mol)

190.8 ± 33.3 177.3 ± 26.3 182.9 ± 26.9 182.7 ± 26.5 177.6 ± 21.1
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simulations reveal that the Glu sidechain formed dynamic

hydrogen bonds with the sidechain and backbone amide of

S2, thereby partly ‘‘locking the sidechain of T1 in a posi-

tion where it packed against Y6. The loss of the E6 side-

chain relieves this lock somewhat, and the loss of the

packing of the T1 against Y6 leads to a destabilization of

the van der Waals interactions by *1.5 kT (Fig. 4b). The

loss of the sidechain of Y in Y6A causes significant loss of

packing, and the associated van der Waals penalty is *9

kT. At the same time, Y6 forms transient hydrogen bonds

(lifetimes of 20 ps) with the sidechain of K94 which are

now lost, leading to an electrostatic penalty of *11 kT

which is compensated for by the relief of desolvation costs.

The mutation W7A causes the maximal loss of van der

Waals (*12 kT) amongst all the mutants; this is experi-

mentally the most destabilized mutant. In addition, there is

the loss of the indole-Leu54 carbonyl hydrogen bond that

destabilizes the electrostatics by *5 kT. The N8A mutation

in our simulation studies improves the overall binding by a

small amount; experimentally, it lead to a very high-

affinity peptide. While the crystal structures did not really

reveal any major differences from the wild type, the

authors concluded that small subtle changes that appear to

stabilize the helix and tend to accumulate, lead to the high

affinity. In the simulations, it is evident that N8 is largely

solvent exposed but does transient hydrogen bond (life-

times of up to 80 ps) to the sidechain of S11 and the

backbone carbonyl of A4. The loss of hydrogen bonds

leads to destabilized electrostatics, which are compensated

for by the solvation effects of the exposed polar atoms.

A comparison of the crystal structure of the N8A mutation

(3LNZ, resolution 1.95 Å [13]) and the modelled structure

shows that the simulations reproduce the experimental data

remarkably well (Fig. 4c). The mutation L9A does not

cause significant changes since L9 is largely solvent

exposed; its mutation to alanine only results in some local

packing destabilization (*3 kT). L10 is packed between

the peptide and MDM2 and its mutation to alanine leads to

Fig. 3 The correlations of the computed free energy, enthalpy and

entropies using the MMGBSA protocol with normal-mode-based

entropies for the binding of the ala scan mutants of PMI to MDM2

with the experimentally determined free energies of binding for

simulations times of 100 ps, 200 ps, 300 ps and 1 ns. The standard

deviations across the simulations, including block averages, are

*10% of the mean values reported in the table, thus yielding an error

of *1–2 kcal/mol
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a packing loss of *6 kT. The S11A mutation results in

local packing destabilization (*3 kT), and the associated

loss of the hydrogen bond to N8 sidechain incurs electro-

static penalties that are compensated for by solvation

effects. The P12A mutation relieves the constraint on the

carboxy terminus, which now forms long-lived hydrogen

bonds with the sidechain of Ly51. While the loss of the P12

packing incurs a van der Waals penalty of *3.5 kT, the

electrostatics are stabilized significantly; of course, they

are offset by the desolvation penalties, resulting in a net

gain of only *3 kT. These 1-ns simulations appear to be a

good compromise between a fairly good correlation

between the computed and experimental data and also

appear to provide mechanisms behind the observed chan-

ges in affinities.

4 Discussion

The field of peptide design has made tremendous progress

in recent years stemming from the development of several

methods for designing/optimizing peptides/peptidomimet-

ics for specific functions including, increasingly, for ther-

apy [31]. One of the major advances stems from the ideas

developed by James Wells [32] that aim to identify hot

spots through alanine-scanning mutagenesis. These yield

regions of a peptide/protein that are candidates for muta-

genesis to improve or destabilize interactions. This

received a great boost when Massova and Kollmann [33]

introduced a simple protocol of computational alanine

scanning. In effect, these attempts to identify the hot spots

by carrying out an MD simulation on a protein–peptide

complex and then each snapshot is manipulated by

mutating a specific residue to alanine and computing the

energetic changes relative to the wild type. The philosophy

was given a further boost through the availability of web-

based protocols for rapid identifications of hot spots by the

group of David Baker [34, 35]. Several other studies have

taken this protocol forward with individual tweeks to the

basic philosophy with varying results, including the origi-

nal work of Kollman which examined the MDM2-p53

interface [33], a TCR-p-MHC complex [36] (with a cor-

relation of around 0.7 with respect to the experimental

affinities, similar to that found by Massova and Kollman),

trypsin–peptide interactions [17] (correlations between

computed and experimental affinities of *0.9). In a very

detailed look at several protocols, including running 10-ns

simulations on each alanine mutation, Bradshaw et al. [17]

used a trypsin-peptide system and showed that the meth-

odology of Kollman gives the best performance. Indeed

their computations yielded the correct ranking of the

mutational effects. They do caution that such methods may

yet be found to be sensitive to system details and high-

lighted a caveat that MD simulations on mutants may

enable the sampling of conformational changes, which will

not be captured by the Kollman method. Our method is a

variant on the Kollman theme and is performed to inves-

tigate whether short bursts of simulations can capture the

conformational properties of these mutations [20] and yet

remain computationally inexpensive. We apply this method

using a dataset generated from the experiments of Li et al.

[13], where the authors characterize the contributions of

each residue of a 12 residue peptide that binds the protein

Fig. 4 a The stacking of Y6 between T1 and His73-MDM2 taken

from the crystal structure 3EQS.pdb of the PMI peptide (cartoon with

Y6 sidechain in spheres; carbon, and oxygen atoms are shown in

cyan, and red, respectively; T1 sidechain is shown as spheres with

carbon, oxygen in yellow and red colours, respectively) complexed

with MDM2 (carbon, nitrogen and oxygen atoms in green, blue and

red, respectively; the His73 is coloured with carbon, nitrogen and

oxygen in magenta, blue and red, respectively). b S3 and E5 of PMI

interact through hydrogen bonds (dashed yellow lines) to stabilize the

helix of PMI (cyan) against the MDM2 (green). c The N8A mutant

version of PMI complexed to MDM2 taken from the crystal

structure 3LNZ (in green) and the final snapshot of one of the

simulations from the 10 1-ns simulations (in cyan). The C-terminal

Pro of the peptide and Lys51 of MDM2 are shown in sidechains
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MDM2 with a high affinity. We find that the correlations

between the computed values with respect to the experi-

mental binding affinities are quite respectable when only

the enthalpic terms are taken into account. Although they

appear to improve somewhat with the simulation times, the

improvement is a mere 7%, in contrast to the tenfold

increase in simulation time. While our method needs

investigations to improve the entropic estimates, it does

reproduce the experimental observation that the hydro-

phobic tetrad is the most highly destabilized upon muta-

tion; in addition, the 1-ns simulations show that the

mutation that enhances the affinity most in the experi-

ments, N8A, is also found to be the most stable in our

study. One of the limitations of our study is that there are

several water molecules that mediate interactions between

the peptide and MDM2 (Fig. 5). While they have been

accounted for in the simulations, we have not included

them for our energetic analysis. That such waters indeed

would have contributed to the energetics has been outlined

in some studies [36]; recent work has been highlighting the

intimate role of water molecules in recognition and binding

of proteins and peptides [37, 38]. How does our protocol

compare with the Kollman protocol as included in the

AMBER software and with the Baker protocol as defined

in the Robetta web server (http://www.robetta.bakerlab.

org/alascansubmit.jsp)? The AMBER protocol was used to

compute the affinities over the last 40 ns of the 50 ns. Both

protocols produce excellent overall correlations of around

0.9 (Fig. 6a). Both protocols do very well at reproducing

the overall correlation; however, these appear to be skewed

as are our own results, stemming from a very good corre-

lation arising from the reproduction of the trends of the

hydrophobic tetrad properties. Disappointingly, the trends

for the rest of the residues are not very good across all the

methods; indeed our method appears to do a little better

than the others (Fig. 6b). The one feature that remains in

favour of our method is that the computations are carried

out in explicit solvent followed by estimation of binding

energies in a generalized born model. The Robetta method

describes the affinities in terms of empirically derived

potentials, while in the AMBER protocol, only the wild-

type dynamics are computed in explicit water while the

affinities of the mutants are estimated in a continuum

approximation for bulk solvent. We are currently exploring

such comparative studies to systems without such dominant

hydrophobic interactions driving the binding. In addition,

the fact that entropies are not computed so well is another

limitation; careful manipulation of entropic effects can be

useful for the design of novel peptides with higher affinities

[39]. Finally, we also note in the 50-ns simulations (data to

be presented elsewhere) that the C-terminus of the peptide

does undergo conformational switching between the crys-

tallographically observed helical conformation and the

more extended conformation seen in the crystal structure of

p53 complexed with MDM2 in 1YCR [27] and the one

modelled in an earlier work [15]. Therefore the alanine

scan was carried out for the PMI peptide, which was

modelled with an extended C-terminus (Table 3; Fig. 6a, b).

While the overall correlations do not change much, it is

promising that there is an improvement in the non-tetrad

region. Curiously, the experimental trends followed by the

most stabilizing (relative to wild-type) mutants, i.e. N8A

followed by L9A are best reproduced by the C-terminal

extended simulations. This may perhaps originate in the

ability of the C-terminus to toggle between the helical and

extended states; our earlier work [15] had demonstrated

that while the P27S mutant of the p53 peptide exists in a

conformation that is extended at the C-terminus as

observed in the crystal structure 1YCR, it can also exist in

a helical conformation and both conformations appeared to

contribute equivalent amounts of binding energy. Thus, our

current finding further strengthens that hypothesis and

suggests that computations of binding affinities may need

to carefully account for conformations other than those

derived from crystal structures, at least in some systems.

Indeed, it is unlikely that this protocol will succeed with

every topology. It is likely that the reason why this works

well in systems such as the PMI–MDM2 interactions is

because PMI assumes a helical fold that is nicely seques-

tered in the MDM2-binding pocket; indeed even if the

C-terminal region is extended, nevertheless the overall

helical fold is quite robust when bound. These peptides

bind through several anchor points—in this case through

F3, W7 and L10. This implies that large perturbations such

as F [ A or W- [ A are easily compensated for by the rest

of the robust helical fold, and hence the binding energetics

are easily captured by the short simulations. In fact, devi-

ations are evident in the fact that when the non-tetrad

Fig. 5 PMI (cyan) complexed to MDM2 (surface) taken from the

crystal structure 3EQS.pdb, showing the water molecules (green
spheres) that mediate hydrogen bonds between the peptide and

MDM2
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regions are examined, the correlation between computed

and experimental data becomes poor. In the current study,

the standard deviations are of the order of 10 kcal/mol

(errors of the order of 1–2 kcal/mol) and this leads to

various overlaps in the plots, thus reducing the net corre-

lations. This magnitude corresponds to a hydrogen bond

and can have significant effects on the binding affinity and

often can mean the difference between a good binder and

an extremely good binder [40]. It will be interesting to

examine the robustness of the computations if small to

large mutations are carried out. Nevertheless, the current

findings do offer promise in speeding the design of pep-

tides with enhanced affinities, albeit for a small class of

systems.

Fig. 6 a Correlations of the binding enthalpies computed using

different protocols against the experimental affinities. b Correlations

of the binding enthalpies of the non-hydrophobic tetrad residues

computed using different protocols against the experimental affinities;

helical and extended protocols refer to the peptides in helical

conformations (as seen in the crystal structure 3EQS of the PMI

peptide complexed to MDM2) or in conformations with the C-ter-

minal modelled in extended conformations as in the crystal

structure 1YCR of the p53 peptide complexed to MDM2. Postpro-

cessing of 50 ns refers to the ala scan carried out based on the

AMBER protocol. Robetta server (robetta.bakerlab.org) was used for

ala scan for the crystal structure and for ten snapshots taken from the

1-ns MD simulation. The standard deviations across the simulations,

including block averages, are *10% of the mean values reported in

the table, thus yielding an error of *1–2 kcal/mol
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5 Conclusions

In conclusion, our study suggests that computational ala-

nine scans of peptide–protein interfaces can yield promis-

ing hot spots for mutagenesis studies by running multiple

short simulations in explicit water of each alanine mutation

and brings about significant reductions in computational

costs. We further find that in some systems, such as the

p53-peptides, accounting for the conformational variability

of the peptides explicitly leads to improvements in the

computed properties. Conformations not seen crystallo-

graphically, yet guided by spectroscopies such as CD, must

be modelled and their effects included in the analyses;

these give insights into the nature and diversity of the

complex dynamics that characterize the interactions and

may not be immediately obvious from the crystal structures

alone; indeed it was the incorporation of these that

appeared to improve the computed affinities for some of

the mutants. However, modelling the entropic contribu-

tions still needs improvements and further work is needed

to examine the effects of small to large mutations.
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